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1. Introduction 

Lanthanide single-molecule complexes are appealing because they have distinct fluorescent properties due to f-f 

electronic transitions. Luminescent lanthanide-based biochemical materials have sparked widespread professional 

curiosity due to their numerous applications in different fields such as bio-imaging [1,2], chemical sensing [3,4]. 

The majority of lanthanides have a half filled submerged 4f-electron shell just below a filled 6s2 shell. The addition 

of 4f electrons with parallel spins results in a large magnetic moment as well as a large total and orbital angular 

momentum. These "inextinguishable" angular moments produce a diverse atomic and molecular structure as well 

as collective structure of these systems [4,5]. Lanthanide ions have very different coordination chemistry than 

transition metal ions. Coordination numbers (CNs) ranging from eight to twelve are common for lanthanide ions 

due to their large ionic radii. The resulting coordination polyhedrons are square antiprism, bicapped trigonal prism, 

triangular dodecahedron (CN=8), tricapped trigonal prism, monocapped square antiprism (CN=9), bicapped square 

antiprism, bicapped dodecahedron, tetrakaidecahedron (CN=10), icosahedron (CN=12), and others. Lanthanide 

coordination chemistry has advanced significantly in recent years, but lanthanide species with CN 8 are still 

uncommon. Dysprosium was discovered in 1886 by Paul Émile Lecoq de Boisbaudran, but it was not isolated in 

pure form until the 1950s, thanks to the development of ion-exchange techniques. Dyprosium's magnetic properties 

are caused by its unfilled 4f shell. Dysprosium is ferromagnetic below 85O K at 1 atm, anti-ferromagnetic between 

85O and 178.5O K, and paramagnetic above 178.5O K. We previously reported the use of F-block metals with high 

magnetic moments in the design of MRI contrast enhancing agents and smart multimodal cancer imaging drugs 
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where other metals could not be substituted [6-14]. While dysprosium does not currently have a wide range of 

applications, we chose this high magnetic Dy(III) metal to investigate its binding properties with macromolecules 

and covid-19 infections. Phenanthroline (phen) is a heterocyclic organic compound that forms strong complexes 

with most d and f block metal ions and is used as a ligand in coordination chemistry [15,16]. 1,10-Phenanthroline is 

a metallopeptidases inhibitor, with one of the first reported cases in carboxypeptidase A [17]. The enzyme is 

inhibited by removing and chelating the metal ion required for catalytic activity, resulting in an inactive Apo 

enzyme. With a much lower affinity for calcium, 1,10-phenanthroline primarily targets zinc metallopeptidases 

[18]. Bovine serum albumin (BSA) is a protein isolated from cow serum albumin. BSA is used in molecular 

biology to stabilize some restriction enzymes during DNA digestion. In many applications, BSA is regarded as a 

universal blocking reagent because it has no effect on the functions of other proteins that do not require it for 

stabilization. BSA is also widely used to estimate the number of units of other proteins, including the Bradford 

Protein Assay [19], by likening an unidentified amount of protein to known concentrations of BSA. 

Chronic respiratory syndromes during subsequent two major outbreaks of lethal Coronavirus, SARS-CoV-1 in 

2003 [20] and Middle-Eastern Respiratory Syndrome (MERS) in 2012 [21], and also the existing SARS-CoV-2 

pandemic, frequently resulted from corrupt and inefficient immune responses triggered by the host ‟s immune 

platform's interplay with the virus [22,23]. While strong immune responses are required to contain and clear viral 

infection, excessive inflammation can damage blood vessels, delay tissue healing after viral clearance, and result in 

acute inflammatory responses and sepsis. The degree and severity of immune-response pathologies differ greatly 

between individuals in the case of SARS-CoV-2. Because of the complexities of the many patterns of 

SARS-CoV-2 response, we urgently require methods to identify important biological mechanisms that act at 

different stages of the infection and enable us to reliably identify differences in path that leads and gene activity 

between clinical practice, tissues within patients, individuals with pre-existing conditions, and age. The immune 

system is complex, sensitive, and dynamic, with a delicate balance of triggers, high-gain feed-back loops, and 

complex interactions among its many agents, exacerbating view of experimental measurements of 

immune-response components as well as the origins of unique variance. In this case, detailed mathematical models 

of patient-specific immune responses may help us understand the range of possible immune responses and how 

they depend on patient-specific variables such as initial exposure level and co-infections, age, sex, pre-existing 

conditions and medications, and so on, for diagnostic, prognostic, and therapeutic purposes. Furthermore, in severe 

cases, COVID-19 symptoms may include blood and vascular disruption, implying that the co-activation of other 

pathways with detrimental effects may play a role in disease outcomes [24].  

From literature review, M-pro seems to be a popular anti-viral drug target site now, and so many labs around the 

world are working on investigational and also in virtual screening research to achieve powerful and effective 

inhibitors. However, drug discovery is typically a trial-and-error/hit-and-miss endeavour, owing in large part to 

fundamental deficiencies in the fundamental understanding of the molecular and cellular structure-free energy 

relationships, and also dependence on equilibrium potency metrics (e.g., IC50, Kd) that are constrained in their 

validity to non-equilibrium situations in vivo [25,26]. Druggable proteins, such as M-Pro, that participate in the 

early stages of infection prior to or during the replication construction phase, are ideal targets for therapeutic 
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intervention. Clinical anti-viral success complex and virion production at a threshold fractional inhibition of the 

protein population over time, which may be relatively high given how each available enzyme duplicate, could even 

correct numerous membrane copies. As previously demonstrated, when the rates of drug association and 

dissociation are tuned to the rates of target or binding site build-up and decay, efficient and effective vibrant 

tenancy under pro circumstances has been accomplished only at least potential exposure. 

A class of virulence factors is one of the body's rapid response immune response and a possible threat for 

anti-COVID-19 therapies. When the receptors recognise a foreign pattern, they become activated, causing the 

immune system to enter antiviral mode. Several researchers have been racing to understand the virus's peculiar 

nature and the pathogenesis of the disease in order to identify potential drug targets. Because of bacterial and viral 

resistance to currently available antibiotics, there is a growing interest in developing new drugs with improved 

activity. Because metals and ligands interact with different stages of the pathogen life cycle, they can be used to 

create new drugs. As a result, our current investigation has identified a number of drug targets. The C-N moiety 

present in Phene ligand will play an important role in terms of biological activity. So, for a number of transition and 

inner transition metal complexes with various biological activities such as antimicrobial, anticancer, and antifungal 

by using a variety of N- donor ligands were studied. Monitoring molecular docking levels in antiviral, antibacterial, 

anticancer, and antimicrobial activities is therefore a promising target therapy for evaluating response to standard 

COVID-19 treatments. Tetra-1,10-Phenantroline Dy(III) complex were selected to see their potential in 

antimicrobial and anticancer activity. We incorporate traditional screening and structure-based drug design 

approaches throughout this work to investigate M-pro inhibition from a theoretical, spectral based, and 

insilico-relevant perspective based on simple principles. 

2. Materials and Methods 

2.1. Materials 

Dysprosium (III) trichloride hexa hydrate, BSA, Celite, Silicagel, and 1,10 phenanthroline were purchased from sigma 

Aldrich and used as received.  Chloroform, DMF, Toluene, acetonitrile, and ethanol were purchased in Merck AR grade 

and used as received. Double distilled water was obtained by distilling distilled water over alkaline potassium 

permanganate. Diethyl ether and acetonitrile (AR, Merck) were used as received. 

2.2. Methods   

CHN microanalyses were carried out using a Perkin-Elmer 2400 Series II CHNS/O Elemental Analyzer, interfaced 

with a Perkin-Elmer AD 6 Autobalance. Helium was used as the carrier gas. Uv-Visible Absorption Spectrum were 

recorded in the 200-900 nm regions on Deep vision UV/VIS spectrophotometer using cuvette with a 1 cm path length. The 

concentration of ligand and metal complexes was kept at 1.00 x 10-5 mol L-1, at 310 K. 

2.2.1. Bovin serum albumin binding studies: The complexes' absorption properties in the presence of BSA were 

determined by treating the complexes with 4.5 percent BSA in water until equilibrium was reached and then 

measuring the absorption over time intervals ranging from 15 minutes to 3 days. All absorption measurements were 

taken in a UV-Visible spectrometer and recorded at 300 K. 



 

Asian Journal of Applied Science and Technology (AJAST) 

Volume 5, Issue 2, Pages 124-133, April-June 2021 

ISSN: 2456-883X                                                              www.ajast.net                                     

127 

2.2.2. Molecular docking study: The docking studies were performed as described in our previous publications 

[6-9, 27].   

2.3. Experiment Methods 

2.3.1. Synthesis of Tetra-1,10-Phenanthroline Dysprosium complex [Dy(III)(Phen)4]: About 0.79 g (4 mmol) of 

1,10-Phenanthroline and 0.28 g (1 mmol) DyCl2.6H2O in 50 mL of double distilled H2O and little Acetonitrile were 

taken in 250 ml RB flask and heated at 120°C under stirring for 24 hours. After the formation of pink colour 

solution, the mixture was cooled to room temperature. The obtained clear pink solution was evaporated to dryness 

under reduced pressure (Scheme-1). The pink [Dy(III)(Phen)4] complex obtained was air dried and recrystallized 

from water, yield 5.17 g (99 %), mp 264 oC (dec.). CHNS/O. calcd. % for C48H32DyN8 (Mr = 883.34): C, 65.27 %; 

H, 3.65 %; N, 12.69 %: Dy, 18.40 %. Found C, 65.17 %; H, 3.45 %; N, 12.52 %: Dy, 18.18 %.  

 

 

 

 

 

 

 

Scheme 1. Synthesis of tetrakis-1,10-phenanthroline-Dy(III) complex 

3. Result and Discussions 

3.1. Theoretical Chemistry 

A molecule can possess different kinds of energy such as bond and thermal energy. Through insilico Molecular 

mechanics and by using Gaussian algorithm the steric energy and the potential energy of the complex were 

analyzed.  

3.1.1. Steric Energy Calculation: The steric energy of a molecule is calculated using molecular mechanics as a 

result of its geometry or morphology. Energy is minimized in nature, and the preferred conformation of a molecule 

is the lowest energy conformation.  

The verification of a molecule is important because the structure of a compound frequently has a large effect on its 

reactivity. Molecular mechanics assumes that even the stereo chemical energy of a molecule is the result of a few, 

direct interactions within the molecule.  

These interactions include the stretching or compressing of bonds beyond their equilibrium lengths and angles, the 

torsional effects of twisting on single bonds, the Van der Waals attractions or points of interest with atoms that are 

even close together, and the electrostatic forces between partial charges in a molecule due to polar bonds. These 
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interactions could be quantified by modelling them with a potential function that provides the same energy as a 

function of distance, angle, or charge [28,29]. The total steric energy of a molecule can be expressed as the sum of 

the energies of the interactions: 

Esteric energy = Estr + Ebend + Estr-bend + Eoop + Etor + EVdW + Eqq   (1) 

Entwined encounters involve bond deformation, bending, stretch-bend, out of plane, and torsion because the atoms 

involved must be directly bonded or bonded to something similar to a common atom. Van der Waals and 

electrostatic (qq) interactions exist between non-bonded atoms. Table 1 displays the complex's steric energy. 

3.1.2. Potential energy calculation: Potential energy is the distinction in energy between an object's energy in one 

position and its energy in another. Potential energy is frequently linked to restoring forces like a spring or gravity.  

Table 1. Calculated minimized energies for [Dy(III)(Phen)4] complex molecule 

Si. No. Calculated Values [Dy(III)(Phen)4] 

1. Stretch 4.4662 

2. Bend 10.0661 

3. Stretch-Bend 1.4529    

4. Torsion -8.2845   

5. Non-1.4 VDW -8.9412   

6. 1.4 VDW   35.5582 

7. Dipole Dipole 1.3664     

8. Total Energy 35.6840  Kcal/mol 

9. Potential Energy 35.665    ±0.095    

10. Steric Energy 349: 35.684  kcal/mole 

 

External force acting against the potential's force field performs the action of stretching this same spring or lifting 

the mass of the object. This work is stored with in force field as energy potential. When the external force is 

removed, the force field acts on the body to perform the tasks by returning it to its initial position, decreasing the 

extension of the spring, or starting to cause the body to fall. The much more proper definition would be that 

potential energy is indeed the energy difference between an object's energy inside one position and its energy in the 

other. Table-1 shows the complex's potential energy. 

3.2. Electronic Absorption Studies 

3.2.1. Absorption spectrum of complex: The UV-Vis absorbance spectra of the [Dy(III)(Phen)4] complex in water 

is presented in figure 1. In the short wavelengths region of the spectrum the spectral curve has a broad maxima with 

multiple less intense peak corresponding to the transitions from the ground 4M19/2, 
6P3/2, 

6P5/2, 
4I11/2, 

4M15/2, 
6Р7/2 (300 

to 397 nm). There are several closely situated energy levels around 250–300 nm, i.e., 4F5/2, 
4I9/2, 

4G9/2, 
4M17/2, 

6P3/2, 
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4K15/2, 
4L19/2, 

4G7/2, 
4D5/2, 

4D1/2. Transitions to all the levels would be of very low intensity.  

 

 

 

 

 

 

 

 

 

Fig.1. Electronic absorption spectrum of [Dy(III)(Phen)4] complex  in water 

3.2.2. Absorption spectrum of complex with BSA: The UV-Vis absorbance spectrum of the complex in water 

along with 4.5% of BSA is presented in figure 2. In the UV-region, the complex displays similar bands with respect 

to free metal complex. The transitions from the ground 4M19/2; 
6P3/2, 

6P5/2 , 
4I11/2 (between 310–418 nm); 4M15/2 and 

6Р7/2 (350 nm) is obtained as like the complex in solvent alone. In the presence of BSA protein the absorption values 

for the complex are shifted due to the polar interaction of metal complex with BSA. The red shift in the absorption 

value from 323 to 318 and 266 to 260 nm confirms the binding interacted energy transfer like LCT and MLCT of 

the complex with BSA protein.  

 

 

 

 

 

 

 

 

 

Fig.2. Electronic absorption spectrum of [Dy(III)(Phen)4] complex with 4.5% BSA in water 

3.3 Molecular docking study with SARS-CoV-2 (PDB: 6LU7) 

The insilico molecular docking study on the complex has studied to identify the possible binding sites on the corona 

virus. The main protease on the spike protein „S‟ contains the key amino acids ALA, ARG, ASN, ASP, CYS, GLN, 

GLU, GLY, HIS, ILE, LEU, LYS, MET, PHE, PRO, SER, THR, TYR, and VAL which makes the molecule high polar 
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and support in binding with human ACE-2 enzyme for multiplication. Also these amino acids are the main source of 

energy providers, replication initiator, and salt bridge former between S1 and S2 to keep the virus anatomy stable. The 

binding efficiency of our [Dy(III)(Phen)4] complex with the virus amino acid sequence were performed and their 

binding site and the depth of burying has been calculated. As it is expect the highly magnetic Dy(III) complex 

strongly anchors through π – interaction with key amino acids like, ALA-285, ASP-153, 197, 245, ILE-106, 

LEU-286, LYS-5, 137, 236, PHE-294, THR-198 and TYR-154 in COVID-19 spike protein with a coupling energy 

of -8.8 kcal mol-1. The docking structure confirms that our complex strongly binds with the M-Protease of the 

COVID-19 spike protein and gives information about the change in virus enzymatic action during replication. The 

polar phenanthroline ligand can be functionalized with other antivirus drug and can be used to treat covid-19 

infections. The binding sites and their orientations are given in figure 3. 

  

  

Fig.3. Molecular Docked Images of [Dy(III)(Phen)4] complex with  

COVID-19 spike Protein (PDB No.: 6LU7) 

4. Conclusion 

The N- donor heterocyclic ligand, 1,10-phenanthroline, based Dy(III) metal complex has been reported to inhibit 

the covid-19 replication process in human. The binding efficiency was evaluated by Invitro and insilico methods. 

Initially the binding affinity with simple serum albumin was done using Uv-Visible spectroscopy. In the presence 

of 4.5 % BSA the complex shows red shift in absorption value due to the polar interactions and the Macrocyclic 

effect of the BSA molecule. This binding affinity examination was extended with insilico method on SARS-CoV-2 

3D crystal structure. The molecular docking study confirms the binding capability of our complex over covid-19 

main protease which is responsible for the binding on ACE-2 in human. Also the higher binding energy (-8.8 

kcal/mol), steric and kinetic inertness confirms the suitability of the smart Dy(III) complex to behave as drug for 

anti-covid studies. Soon the complex will be recognized as a potential antiviral agent for other microbes responsible 

for Covid like infections.  
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