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Highlights 

(1) Introduce the problem of Falkner-Skan boundary layer flow over a static wedge by considering certain effects. 

(2) Applying the scaling transformations to the problem as a similarity representation and then a numerical 

solution is done to indicate the effects of the influence parameters. 

(3) Compare the present results with previous findings.  

1. Introduction 

Usually, the PDEs system is difficult to solve. So, an advanced transformation technique called similarity 

transformations are introduced to transform an original system of PDEs to a simplified ODE system. In studying a 

flow over a static wedge that is submerged in a viscous fluid, Falkner and Skan in (1931) reduce the boundary layer 

PDEs to a nonlinear third-order ODE by developing a similarity transformation. Diversity effects have been 

considered since then by many scholars, one of which developed a new numerical technique to transform the 

equation that governs the problem under study into a non-linear second-order BVP and uses the Lie-group shooting 

method on Blasius and Falkner–Skan equations to solve it (Liu and Chang 2008). Another study used the Adomian 

decomposition method to solve the momentum equation of the Falkner–Skan equation for accelerated flow and 

decelerated flow cases, such that, 𝑚 > 0, 𝛽 > 0 and 𝑚 < 0, 𝛽 < 0 where 𝑚 is the power of length coordinate 

respectively, on a steady state BLF (Alizadeh et al. 2009). A discussion carried on the effect of suction and injection 

on tangential movement of a non-linear power-low stretching surface that governed by the laminar BLF and 

incompressible fluid (Afzal 2010). Also, based on a new approximate method called pseudo-spectral for the 
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Hermite functions to solve the third order nonlinear ordinary differential laminar boundary layer Falkner–Skan 

equations on the semi-infinite domain (Parand et al. 2011). Correspondingly, dual solutions are obtained to the BLF 

of a non-Newtonian power-law fluid over a wedge with suction or injection, which stretches towards or away from 

a variable free stream (Postelnicu and Pop 2011). In the same vein, it has been found that the slip BC have been 

frequently applied in the flow problems computationally numerical being examined to figure out its influence on 

the solution when a rotational body force field exists (Chen et al. 1981). On the other hand, other scholars such as, 

(Hayat et al. 2007), (Xiao et al. 2009), (Rahman and Eltayeb 2010) and (Li and An 2011), conducted studies on the 

flow of a Newtonian and non-Newtonian fluid with heat transfer, taking into account slip conditions. In addition, 

because of the direct relation between thermal conductivity and temperature (if the region of the temperature is 

large), some researchers such as, (Abel et al. 2009), (Ahmad et al. 2010), (Shang 2011) and (Mierzwiczak et al. 

2011) used temperature-dependent thermal conductivity in their studies by considering the thermal conductivity as 

a function of the temperature. This study aims to consider the problem of Falkner-Skan BLF over a static wedge by 

taking into consideration the effect of the 𝑁 and 𝐴 parameters. A similarity representation of the problem is 

presented by applying the scaling transformations method where it has been solved numerically to indicate the 

effects of the influence parameters, viz-a-viz: 𝑁, 𝐴 and 𝑚, where, 𝑚 is Falkner–Skan power law parameter.  

2. Mathematical Formalism of the Problem 

Take into account the steady two-dimensional Falkner-Skan BLF past a static wedge as illustrated in Figure (1); 

where, the effects of 𝑁 and 𝐴 parameters are considered. Assume that the velocity of the free stream is 𝑢𝑒 = 𝑈∞𝑥𝑚 

and the Cartesian coordinate system (𝑥, 𝑦), where 𝑥 and 𝑦 are the coordinates measured along the surface of the 

wedge and normal to it (Yacob et al. 2011). Now, the system of PDEs is given as: 

 

 

 

 

 

 

Fig.1. The physical model and its coordinate system 
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𝑦 = 0, 𝑢 = 𝑁1(𝑥)𝑣
𝜕𝑢

𝜕𝑦
, 𝑣 = 0, 𝑇 = 𝑇𝑤                                     (4)      

𝑦 → ∞, 𝑢 = 𝑢𝑒(𝑥), 𝑇 = 𝑇∞                                            

Such that, 𝑢 and 𝑣 are the velocity components along the 𝑥 and 𝑦 axes, 𝜌 is the fluid density, 𝑐𝑝 is the specific 

heat, 𝜐 is the kinematic viscosity, 𝑁1 is the slip parameter, 𝑇 is the temperature, 𝑇∞ is the free stream temperature 

and 𝑘 is the thermal conductivity. The following relations for 𝑢, 𝑣, 𝜃 and 𝑘 are introduced as:  

𝑘(𝑇) = 𝑘∞[1 + 𝑐(𝑇 − 𝑇∞)],           (Abel et al., 2009)           (5)                                                                   

𝜃 =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝑢 =

𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
 

Where, 𝑐 and 𝑘∞ are constants, 𝜓 is the stream function and 𝜃 is the dimensionless temperature. Then, equations 

(1) and (3) transform as: 

𝜓𝑦𝜓𝑥𝑦 − 𝜓𝑥𝜓𝑦𝑦 = 𝑢𝑒
𝜕𝑢𝑒

𝜕𝑥
+ 𝑣𝜓𝑦𝑦𝑦                             (6) 

𝜓𝑦𝜃𝑥 − 𝜓𝑥𝜃𝑦 = 𝛼
𝜕

𝜕𝑦
[(1 + 𝐴𝜃)

𝜕𝜃

𝜕𝑦
]                              (7) 

And the BCs in (4) transforms to: 

𝑦 = 0, 𝜓𝑦 = 𝑁1𝑣𝜓𝑦𝑦, 𝜓𝑥 = 0, 𝜃 = 1                           (8) 

𝑦 → ∞, 𝜓𝑦 = 𝑢𝑒(𝑥), 𝜃 = 0 

Where, 𝐴 = 𝑐(𝑇𝑤 − 𝑇∞) is the thermal conductivity parameter and 𝛼 =
𝑘∞

𝜌𝑐𝑝
 is the thermal diffusivity. 

Equations (6)-(8) cannot be solved to get a closed-form solution; so transforming this system to an ordinary system 

using scaling transformations: 

𝑥∗ = 𝜆𝜀𝑐1𝑥, 𝑦∗ = 𝜆𝜀𝑐2𝑦, 𝜓∗ = 𝜆𝜀𝑐3𝜓, 𝜃∗ = 𝜆𝜀𝑐4𝜃                                                  (9) 

Where, the 𝑐’s are constants (Mukhopadhyay et al., 2005). 

Then, (6)-(8) stay invariant with the group of transformations in (9) if: 

𝑐2 =
1

2
(1 − 𝑚)𝑐1, 𝑐3 =

1

2
(1 + 𝑚)𝑐1, 𝑐4 = 0                                                         (10) 

and the characteristic equations become: 

𝑑𝑥

𝑐1𝑥
=

𝑑𝑦
1

2
(1−𝑚)𝑐1𝑦

=
𝑑𝜓

1

2
(1+𝑚)𝑐1𝜓

=
𝑑𝜃

0
                                                                          (11) 

Solving the equations above resulted that: 

𝜂 = 𝑥
1−𝑚

2 𝑦, 𝜓 = 𝑥
1−𝑚

2 𝑓(𝜂), 𝜃 = 𝜃(𝜂)                                                                   (12) 
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Substituting from (12) into (6) and (7): 

𝑣𝑓′′′ +
𝑚+1

2
𝑓𝑓′′ − 𝑚(𝑓′)2 + 𝑚𝑈∞

2 = 0                                                                 (13) 

𝛼(1 + 𝐴𝜃)𝜃′′ +
𝑚+1

2
𝑓𝜃′ + 𝛼𝐴(𝜃′)2 = 0                                                                (14) 

Where, prime is the derivative with respect to 𝜂. Then, the BCs become: 

𝑓(0) = 0, 𝑓′(0) = 𝑁̃(𝑥)𝑓′′(0), 𝜃(0) = 1                                                               (15) 

𝑓′(∞) → 𝑈∞, 𝜃(∞) = 0 ,  

where 𝑁̃(𝑥) = 𝑣𝑁1(𝑥)𝑥(𝑚+1) 2⁄ . 

The following are dimensionless variables: 

𝜂̃ = √
𝑈∞(𝑚+1)

2𝑣
𝜂, 𝑁1(𝑥) =

√2 𝑁

√𝑣𝑈∞(𝑚+1)𝑥𝑚+1
, 𝑓 = √

2𝑣𝑈∞

(𝑚+1)
𝑓(𝜂̃), 𝜃(𝜂) = 𝜃(𝜂̃)         (16) 

Where, 𝑁 is the constant velocity slip parameter.  

Using (16), (13) and (14) become: 

𝑓′′′ + 𝑓𝑓′′ +
2𝑚

𝑚+1
[1 − (𝑓′)2] = 0                                 (17) 

(1 + 𝐴𝜃)𝜃′′ + 𝑓𝜃′ + 𝐴(𝜃′)2 = 0                                  (18) 

and the corresponding BCs (15) become: 

𝑓(0) = 0, 𝑓′(0) = 𝑁𝑓′′(0), 𝜃(0) = 1                          (19) 

𝑓′(∞) = 1, 𝜃(∞) = 0 

3. Numerical Results and Discussions 

Numerical results are obtained to study the effect of the various values of the parameters 𝐴, 𝑚 and 𝑁 on velocity, 

temperature, shear stress coefficient and rate of heat transfer.  

For this, equations (17) and (18) together with their corresponding BCs in (19) have been solved numerically using 

Runge–Kutta–Fehlberg fourth fifth method. Velocity 𝑓′(𝜂)  and temperature 𝜃(𝜂)  findings are illustrated in 

Figures (2)-(7); while the coefficient of the skin friction 𝑓′′(0) and the rate at the wall heat transfer 𝜃′(0) are 

presented in Table (1). 

It is noticed from Table (1) that the increase of 𝐴 decreases the rate of heat transfer. One also can see that the 

increase of 𝑚 increases the wall velocity, the shear stress and the heat transfer rate at the wall.  

Further, the wall velocity and the wall heat transfer rate increase while the skin friction coefficient decreases with 

the increase of the slip parameter 𝑁. 
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Table 1. Values of velocity profiles, shear stress coefficient and rate of 

wall heat transfer for different values 𝐴, 𝑚, 𝑁 

−𝜽′(𝟎) 𝒇′′(𝟎) 𝒇′(𝟎) 

𝑵 𝒎 
𝑨 = 𝟐 𝑨 = 𝟏 𝑨 = 𝟎. 𝟖 𝑨 = 𝟎. 𝟓 𝑨 = 𝟎. 𝟓 𝑨 = 𝟎. 𝟓 

0.29831 0.36810 0.38974 0.43146 0.76741 0.07674 0.1 

0.2 0.32200 0.40114 0.42576 0.47328 0.66059 0.26423 0.4 

0.33759 0.42293 0.44952 0.50086 0.56767 0.39737 0.7 

0.34829 0.43788 0.46581 0.51978 0.49300 0.49300 1 

0.31226 0.38672 0.40980 0.45428 0.97208 0.09721 0.1 

0.5 0.33577 0.41978 0.44591 0.49633 0.79102 0.31641 0.4 

0.35000 0.43980 0.46771 0.52179 0.65392 0.45775 0.7 

0.35926 0.45283 0.48200 0.53835 0.55311 0.55311 1 

0.31875 0.39543 0.41920 0.46500 1.08361 0.10836 0.1 

0.8 0.34200 0.42826 0.45509 0.50686 0.85730 0.34292 0.4 

0.35548 0.44729 0.47589 0.53112 0.69581 0.48706 0.7 

0.36402 0.45935 0.48907 0.54648 0.58147 0.58147 1 

0.32351 0.40186 0.42614 0.47292 1.17366 0.11737 0.1 

1.2 0.34650 0.43439 0.46173 0.51449 1.17366 0.36339 0.4 

0.35937 0.45262 0.48167 0.53777 0.72727 0.50909 0.7 

0.36736 0.46395 0.49406 0.55222 0.60242 0.50909 1 

The effect of 𝑚 on the velocity and the temperature profiles are shown in Figures (2) and (3), respectively for 

𝐴 = 1 and 𝑁 = 1.  

 

 

 

 

 

 

 

 

 

 

Fig.2. Effects of 𝑚 on the velocity, when 𝐴 = 1 and 𝑁 = 1 
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Fig.3. Effects of 𝑚 on the temperature, when 𝐴 = 1 and 𝑁 = 1 

Figure (2) shows that the velocity increases as 𝑚 increases while Figure (3) the temperature profiles decreases with 

increasing values of 𝑚.  

Figures (4) and (5) represents the effect of 𝐴 on the velocity and temperature profiles with 𝑚 = 1 and 𝑁 = 1.  

 

 

 

 

 

 

Fig.4. Effects of 𝐴 on the velocity, when 𝑚 = 1 and 𝑁 = 1 

It is clear that there is no change in the velocity profiles as in Figure (4) while from Figure (5) the temperature 

decreases when 𝐴 increases. 

 

 

 

 

 

 

 

Fig.5. Effects of 𝐴 on the temperature, when 𝑚 = 1 and 𝑁 = 1 
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Figures (6) and (7) depict the effects of 𝑁 on the velocity and temperature profiles, respectively, with 𝑚 = 1 and 

𝐴 = 1. One can see clearly that the velocity increases with the increase of 𝑁, while the temperature behaviour is 

just the opposite. 

 

 

 

 

 

 

Fig.6. Effects of 𝑁 on the velocity, when 𝐴 = 1 and 𝑚 = 1 

 

 

 

 

 

 

 

Fig.7. Effects of 𝑁 on the temperature, when 𝐴 = 1 and 𝑚 = 1 

Never the less, the results obtained have been compared with previous published findings by (Watanabe 1990), 

(Yih 1998) and (Yacob et al. 2011) when 𝐴 = 0, 𝑚 = 0 and 𝑁 = 0. It can be seen that there is an excellent 

agreement between the present and previous findings as it is shown in Table (2). 

Table 2. The values of 𝑓′′(0) for various values of 𝑚 when 𝐴 = 0 and 𝑁 = 0 

Present Results Eycob (2011) Yih (1998) 
Watanabe 

(1990) 
𝒎 

0.46960007 0.4696 0.649600 0.46960 0 

0.65499372 0.6550 0.654979 0.65498 1/11 

0.80212560 0.8021 0.802125 0.80213 0.2 

0.92768004 0.9277 0.927653 0.92765 1/3 

1.03890348 1.0389   0.5 

1.23258764 1.2326 1.232588  1 
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4. Conclusion 

This paper presented a study on heat transfer analysis for Falkner-Skan BLF past a wedge with respect to the slip 

condition considering temperature-Dependent thermal conductivity.  

The system of PDEs was converted to a non-linear system of ODEs using scaling transformation analysis and then 

solved numerically by Runge–Kutta– Fehlberg method. It is noticed from the numerical results that the velocity, 

rate of heat transfer at the wall and skin friction coefficient increase with 𝑚, but the fluid temperature decrease.  

The increase of 𝑁 yields to an increase of the velocity and the wall heat transfer rate, while it decreases the 

temperature and shear stress. The fluid temperature and wall heat transfer rate decrease with the 𝐴. 
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